A gel aspiration-ejection system for the controlled production and delivery of injectable dense collagen scaffolds

Neysan O Kamranpour, Amir K Miri, Mark James-Bhasin and Showan N Nazhat
Department of Mining and Materials Engineering, McGill University, Canada
E-mail: showan.nazhat@mcgill.ca

Keywords: extracellular matrix, tissue equivalents, injectable, dense collagen gels, osteogenesis, hydraulic permeability, plastic compression

Supplementary material for this article is available online

Abstract
A gel aspiration-ejection (GAE) system has been developed for the advanced production and delivery of injectable dense collagen (I-DC) gels of unique collagen fibrillar densities (CFDs). Through the creation of negative pressure, GAE aspirates prefabricated highly hydrated collagen gels into a needle, simultaneously inducing compaction and meso-scale anisotropy (i.e., fibrillar alignment) on the gels, and by subsequent reversal of the pressure, I-DC gels can be controllably ejected. The system generates I-DC gels with CFDs ranging from 5 to 32 wt%, controlling the initial scaffold microstructure, anisotropy, hydraulic permeability, and mechanical properties. These features could potentially enable the minimally invasive delivery of more stable hydrogels. The viability, metabolic activity, and differentiation of seeded mesenchymal stem cells (MSCs) was investigated in the I-DC gels of distinct CFDs and extents of anisotropy produced through two different gauge needles. MSC osteoblastic differentiation was found to be relatively accelerated in I-DC gels that combined physiologically relevant CFDs and increased fibrillar alignment. The ability to not only support homogenous cell seeding, but also to direct and accelerate their differentiation through tissue-equivalent anisotropy, creates numerous opportunities in regenerative medicine.

1. Introduction
Tissue engineering and regenerative medicine aims to restore tissue function through delivery of viable elements and their host integration [1]. Because of their innate structural and compositional similarities to the native extracellular matrix (ECM) and their extensive framework for cellular proliferation and survival, hydrogels can be used to locally and controllably deliver therapeutics [2]. Hydrogels can also be injectable, thereby reducing the invasiveness, time, cost, and complexity of surgical procedures and accelerating postoperative healing. As the most abundant ECM protein in connective tissues and bone, fibrillar type-I collagen provides the key scaffolding material in the human body, dictating tissue mechanical properties, while signaling back to maintain a differentiated cell phenotype. In this regard, extracted, acid solubilized type-I collagen molecules, which self-assemble at physiological pH and temperature, are attractive as injectable hydrogels [3]. However, the currently available highly hydrated collagen (HHC)-based gels rely on postinjection gelling, which forms hydrogels of randomly entangled nanofibrillar frameworks [3] that exert no microstructural control and do not fully mimic the highly organized components of native ECM and bone structures. In addition, as a consequence of their low collagen fibrillar density (CFD; <1 wt%), these hydrogels have weak mechanical properties, undergo significant cell-mediated contraction [4, 5], and are rapidly resorbed in vivo [6]. While chemical crosslinking increases the durability of HHC gels [7], it negatively impacts their biocompatibility [8, 9]. In effect, currently available injectable collagen hydrogels lack physiological relevance.

Among the techniques to increase gel CFD [10–14], plastic compression (PC) has been shown to be a rapid, cell-independent process that generates cell-seeded, mechanically strong, dense collagen (DC; >5 wt% CFD) gels [13]. These osteoid mimicking DC gels have supported the osteogenic differentiation of three-dimensional seeded preosteoblasts and...
mesenchymal stem cells (MSCs) in vitro [15–18]. However, while DC gels are of physiologically relevant CFDs, these matrices retain the initial random nanofibrillar arrangement and lack the preferred structured organization of native tissues, yielding a nondirectional permeability field. Moreover, these DC gels are not injectable, which ultimately limits their potential clinical applicability.

Recently, collagen gel aspiration-ejection (GAE) was introduced as a technique to produce injectable dense collagen (I-DC) gels with tunable CFDs and microstructures [19]. Through the creation of negative pressure, GAE initially aspirates prefabricated HHC gels into a blunt needle of a predefined lumen size, simultaneously imparting compaction and meso-scale anisotropy on the gels, and by subsequent reversal of the pressure, I-DC gels can be controllably ejected. I-DC gels have demonstrated significant collagen fibril alignment, impacting seeded MSC morphology and differentiation [19]. In order to advance the GAE technique, this study reports on the development of a system for the production and delivery of I-DC gels. The effect of needle lumen size on initial I-DC CFDs as produced through gauge numbers 8G through 14G, as well as their tensile mechanical properties, and extent of directionality (alignment) was investigated. In addition, the ability of I-DC gels in regulating anisotropic permeability was established through a mathematical model. Furthermore, the impact of gel CFD and extent of alignment on seeded MSC proliferation and osteoblastic differentiation was investigated in I-DC gels produced through two needle gauge numbers and compared to those seeded in PC produced DC gels.

2. Materials and methods

2.1. Processing of HHC gels
Precursor HHC gels were processed by neutralizing a 4:1 ratio of 6.0 mg ml⁻¹ in 0.6% acidic solution (Collagen Solutions LTD, UK) of sterile bovine dermis derived type-I collagen and 10X concentrated Dulbecco’s Modified Eagle Medium (10X DMEM; Sigma Aldrich, Canada) with 480 µl of 5N NaOH [20]. The neutralized solution was then cast in 1.5 ml aliquots into the cylindrical molds of a 48-well plate (Corning Costar, USA) and incubated at 37 °C for 30 min to complete gelation.

2.2. I-DC gel production through GAE
As cast, precursor HHC cylindrical gels were processed into I-DC gels through a GAE system (figure 1(a)) comprised of an angioplasty inflation device (AID; B Braun, Germany) to apply pressure differentials attached to a fluid transfer syringe (Fisher), which introduced an incompressible fluid, necessary for gel ejection, into the chamber of the AID. The connection between the AID and syringe was achieved via two Luer lock valves attached in series to control flow direction. An interchangeable needle (Hamilton Co., USA) was then attached to the port of the most distal Luer lock valve.

The GAE process was initiated by completely inserting the piston of AID into its cylinder component followed by gently positioning the attached needle at the concentric surface center of the HHC gel. Aspiration was applied by gently retracting the piston to generate negative pressure (~0.01–1 bar) and draw the HHC gel into the needle. Once the gel was almost fully drawn into the needle, the vacuum line was closed by locking the distal Luer lock valve. This step prevented the I-DC gel from entering the cylindrical chamber of AID. At this point, the compacted hydrogel remained in position within the needle tip and ready for ejection.

To ensure controlled ejection of the I-DC gels, the syringe was filled with a sterile incompressible fluid (e.g., water, phosphate buffered saline, culture media) and introduced through the proximal Luer lock valve with an open setting between the syringe and AID. The two Luer lock valves were then adjusted manually to open the pathway directly between the densification needle and AID. Next, positive pressure was applied through AID to controllably eject the I-DC gel. Through the GAE system, the properties of I-DC gels produced using needle gauge numbers 8G, 10G, 12G, and 14G were investigated. Depending on the length and diameter of the gel, which were dictated by the dimensions of the precursor HHC gel and the needle gauge number, the required aspiration pressure and time varied from ~0.05 bar and ~10 s, respectively, for 8G needles to ~1 bar and ~100 s for 14G needles.

2.3. DC gel production through PC
DC gels were produced by the PC method, as previously described [13]. Briefly, precursor HHC gels were placed between two nylon meshes and on top of a steel mesh and absorbent pad. DC gels were produced by applying a 1 kPa compressive stress for 5 min.

2.4. Determination of gel CFD
Previously reported CFD values were used [19, 20]. In brief, the weight percent of collagen in the precursor HHC gels and after GAE or PC was calculated by weighing the gels (n = 5) before and after freeze drying (BenchTop K, VirTis, Canada).

2.5. Mechanical analysis of I-DC gels
Tensile testing was carried out on I-DC gels produced through GAE using needle gauge numbers 8G, 10G, 12G, and 14G. The I-DC gel specimens (n = 5) with 5 mm gauge length were mounted onto a silicon carbide paper interface with cyanoacrylate glue to facilitate their attachment to the grippers of an ElectroForce Biodynamic 5160 tensile test instrument (Bose Corp., USA). Tensile tests were carried out using a 20 N load cell and a controlled displacement rate of
0.01 mm s\(^{-1}\). Specimens were kept hydrated with droplets of deionized water. The initial load versus displacement data was processed to generate a corresponding stress–strain curve by using the needle internal diameter (3.43, 2.69, 2.16, and 1.60 mm corresponding to 8G, 10G, 12G, and 14G, respectively) as the nominal gauge diameter of each I-DC gel specimen and initial gauge length for stress and strain calculations, respectively. The apparent modulus and UTS were calculated from the linear region of the stress–strain curves and maximum stress values, respectively.

2.6. Microstructural analysis

Scanning electron microscopy (SEM) and nonlinear laser scanning microscopy (NLSM) imaging, based on second-harmonic generation, were used to investigate the microstructures of I-DC gels and compared to those DC gels produced through PC, as well as demineralized bone (DMBB) and tendon samples. Demineralized bone samples were prepared from bovine femur and cut into longitudinal and horizontal sections before fixing in 10% methanol free formaldehyde for 72 h and placed in a 5 M formic acid solution for a 5-week demineralization period [21]. Longitudinally cut tendon biopsies were dissected from rat tails preserved in 4% formaldehyde. The tissue samples were then rinsed in deionized water and prepared for either SEM or NLSM imaging as described below.

For SEM analysis, the I-DC and DC gels were initially fixed in 4% formaldehyde for 30 min followed by rinsing in deionized distilled water for 15 min. Subsequently, all samples were hydrated through a graded series of ethanol solutions, followed by chemical drying using 1,1,1,3,3,3-hexamethyldisilazane (Fischer). SEM analysis was performed on 25 s Au Pd\(^{-1}\) sputter coated samples (Hummer VI Sputter Coater, Ladd Research Industries) with a Field Emission-STEM (FEI-50; SEM Fei Inspect FEI, The Netherlands) at 5 kV and 10 mA with a working distance of 10 mm.

For NLSM analysis, the I-DC and DC gels were initially fixed in 4% formaldehyde for 30 min followed by rinsing in deionized distilled water for 15 min. Subsequently, all samples were placed in a 70% ethanol solution overnight before paraffin mounting in blocks, then sectioned into 60 \(\mu\)m thick specimens and placed onto glass slides. A Leica Microsystems

Figure 1. Standardized GAE for I-DC gel production and CFD characterization. (a) GAE system consisting of (i) AID, (ii) fluid transfer syringe, (iii) two Luer lock valves, and (iv) densification needle. Expanded figures showing Luer lock valve configuration and precursor HHC gel during I-DC processing. (b) Images of ejected I-DC gels from 8G, 10G, 12G, and 14G needles. (c) I-DC gel CFDs (black bars) versus needle gauge number and cross-sectional area (grey line).
Passage 9

2.7. Culturing of seeded MSCs in I-DC gels

Culturing was carried out in 6-Well plates in either growth medium supplemented with 1% Penicillin-Streptomycin and incubated for 3 h under darkness in 5% CO₂ and 37 °C. A fluorescent detection system was employed using a TECAN 9600 epifluorescent plate reader with excitation at 535 and 600 nm for emission detection. Analysis was carried out at days 11 and 21 and plotted against the fluorescence intensity, which was proportional to the magnitude of metabolic activity. Confocal laser scanning microscopy (CLSM; Carl Zeiss LSM510meta) was used to image seeded MSC viability and morphology at days 11 and 21 in culture. Gels were stained with 0.1 M calcein AM solution (i.e., in culture media) as a Live assay analysis and incubated at 37 °C for 15 min prior to viewing. Excitation and emission wavelengths of 490 and 530 nm were used to visualize the stained cells by plane scanning. The resulting emissions from the stain were detected for image assembly.

2.8. Cell metabolic activity and viability

The AlamarBlue™ assay (Life Technologies, Canada) was used to investigate the seeded MSC metabolic activity as an indicator of cell viability and proliferation [23]. Three biopsies of gels were stained in culture media with 10% AlamarBlue™ reagent and 10% FBS supplemented with 1% Penicillin-Streptomycin and incubated for 3 h under darkness in 5% CO₂ and 37 °C. A fluorescent detection system was employed using a TECAN 9600 epifluorescent plate reader with excitation at 535 and 600 nm for emission detection. Analysis was carried out at days 1, 11, 15, and 21 and plotted against the fluorescence intensity, which was proportional to the magnitude of metabolic activity.

Confocal laser scanning microscopy (CLSM; Carl Zeiss LSM510meta) was used to image seeded MSC viability and morphology at days 11 and 21 in culture. Gels were stained with 0.1 M calcein AM solution (i.e., in culture media) as a Live assay analysis and incubated at 37 °C for 15 min prior to viewing. Excitation and emission wavelengths of 490 and 530 nm were used to visualize the stained cells by plane scanning. The resulting emissions from the stain were detected for image assembly.

2.9. Cell gene expression

Quantitative polymerase chain reaction (q-PCR) was conducted to amplify alkaline phosphatase (Alp), Runt-related transcription factor 2 (Runt2/Cbfa1), and osteocalcin (Ocn/Bglap) transcripts as indicators of MSC osteogenic differentiation. Gels cultured in both nonosteogenic and osteogenic media were subjected to the PureLink® RNA kit (Life Technologies, Canada). This generated RNA transcripts that were reverse transcribed to cDNA by 200 U/μl M-MuLV reverse transcriptase (NEB, USA) in a solution containing 10x reaction buffer, 2.5 mM of each deoxynucleotide triphosphate (NEB, USA), RNase inhibitor at 10 U/μl, total RNA transcripts in water, and 50 μM oligo d(T). The reverse transcription reaction underwent incubation at 37 °C for 1 h and the temperature was increased to 50 °C upon completion to denature the reverse transcriptase. SYBR® Select (Life Technologies) q-PCR master mix and primer pairs: Alp plus 5′-GGGAGATGGTATGGGCGTCTC-3′, minus 5′-AGGGCCACAAAGGGGAATT-3′; Runx2/Cbfa1 plus 5′- plus 5′-ACCCCATTCCACTCGTC-3′, minus 5′-CTGTCGTCGTGCCTTCCGGTT-3′; Ocn/Bglap plus 5′-GCAAATGCTTGATGCTCAGGC-3′, minus 5′-ACGAGCATGTAAGCTCATAG-3′; Gapdh plus 5′-AACGGCTCAGACAGCTC-3′, minus 5′-CAGGGATGATGTTCTGGGCA-3′ (200 nM each) were prepared for entry into the 7900HT q-PCR thermocycler (Applied Biosystems, USA). Cycling conditions were as follows: an initial denaturation of 95 °C for 10 min, followed by 40 repeats of 95 °C of denaturation for 15 s and an annealing/extension phase of 45 s. Using the delta–delta cycle threshold method, data was normalized to the expression of Gapdh and calibrated to the initial time point.
2.10. Statistical analysis
Fibril dispersion angles in I-DC gels were statistically compared to that in DC gel as well as DMBB and rat-tail tendon using ordinary one-way analysis of variance. Tukey’s multiple comparisons test determined significant differences in MSC metabolic activities seeded in I-DC and DC gels. One-way analysis of variance was calculated using Bonferroni’s multiple comparison test for significant differences. q-PCR data was statistically compared between gels cultured in nonosteogenic and osteogenic media. Additionally, the two populations of data sets were compared between the tested gels. Two-way analysis of variance was calculated, with a Bonferroni posttest correction to determine significant differences. A 95% confidence interval was used for each calculation.

3. Results and discussion
3.1. I-DC gel production with tuneable CFDs and mechanical properties
I-DC gels with tuneable CFDs and microstructures can be produced by GAE through the application of pressure differentials [19]. The GAE system developed in this study (figure 1(a)) reduced the variability of human subjectivity by applying controllable and adjustable aspirating and ejecting pressures via AID. In addition, the broader range of applicable pressures negated the use of absorbent paper in accelerating water expulsion and the compaction of precursor HHC gels (figure S1 shows the I-DC gels produced through the GAE process). By using needle gauge numbers 8G, 10G, 12G, and 14G in this GAE system (figure 1(b)), I-DC gels with distinct CFDs (figure 1(c)) and respective densification ratios (fold increase in CFD) of 7.5, 10.3, 14.8, and 22.3 were produced. The initial CFD value of the precursor HHC gels fibrilized from a collagen solution concentration of 6 mg ml⁻¹ were approximately 0.8 wt%. Modifications of the initial collagen acidic-solution concentration in the precursor HHC and aspirating needle gauge number (i.e., diameter) yielded I-DC gels of CFDs in the range 5 ± 0.010 to 32 ± 0.026 wt% (figure S2(a)), demonstrating more control in producing I-DC gels of defined CFDs compared to the previously reported GAE method [19]. Furthermore, an increase in the ratio between the diameters of the precursor HHC (i.e., mold diameter) to the final I-DC gel size (i.e., needle diameter) led to an increase in I-DC CFD (figure S2(b)).

Quasistatic tensile testing indicated significant increases (p < 0.05) in apparent modulus and ultimate tensile strength (UTS) values with I-DC gel CFD (figures 2(a) and (b), respectively; figure S3 shows the representative stress-strain curves). As previously reported for rolled DC sheets [20, 24] produced by PC gel densification leads to an increase in contact points between collagen fibril bundles where greater frictional forces are accumulated, thus requiring greater levels of tensile stress.

3.2. I-DC gel microstructural characterisation
The microstructures of the I-DC gels of increasing CFDs were compared to those of DC as well as the samples derived from native DMBB and rat-tail tendon. Qualitatively, SEM micrographs (figure 3(a)) indicated localized microscale anisotropy in I-DC gels, which was attributable to bulk fibril orientation in the direction of gel aspiration, in contrast to DC gels, which showed collagen fibrils of random orientation [13]. SEM micrographs of DMBB and rat-tail tendon, taken parallel to the direction of growth, confirmed their highly ordered structures with clearly aligned collagenous fibrils.

NLSM allowed for the quantification of fibrillar orientation, as defined by direction and dispersion. Direction represented the mean orientation in a given volume of interest, whereas dispersion denoted the degree of deviation or scattering in the orientation of individual fibrils from the mean orientation. Thus, highly aligned collagen fibrils yielded smaller dispersion angles. Representative NLSM images showed typical fibril dispersion properties of I-DC gels of different CFDs aspirated through needle gauge numbers 8G, 10G, 12G, and 14G (figure 3(b)) and their post-processing (for randomly selected 100 × 100 μm regions) using an ImageJ edge directionality algorithm determined their directionality histograms (figure 4(a)). A narrower normal Gaussian distribution of fiber directionality indicated an increase in fibrillar alignment, and there were significantly lower (p < 0.05) mean fibril dispersion angles (i.e., indices) in all I-DC gels compared to those in DC (figure 4(b)). Compared to PC, which compacts a gel in its entirety at the same time, thus providing little temporal and spatial dimension for fibrillar rearrangement, GAE compaction is more gradual and directional, initiating along one end of the precursor HHC and thus experiences the two-dimensional (i.e., planar) compaction process that provides the driving force for fibrillar rearrangement. However, the I-DC gels displayed significantly more dispersed collagen fibrils compared to both native derived tissues, which have a highly aligned collagenous microstructure that serve major functional roles [25–27]. While there were no significant differences in the mean fibril dispersion angles within the I-DC gels, those between 8G and 12G I-DC gels progressively decreased (along with their respective standard deviations), indicating greater extent of alignment, which then increased in that aspirated through the smaller 14G needle. This may be attributed to a gel compaction limit where shrinkage is no longer constrained to the expulsion of water, but also to the compaction and deformation of individual fibrils. Future studies will also investigate the extent of fibrillar alignment in regions at higher magnifications.
The progressive increase in alignment in I-DC gels produced through gauge numbers 8G, 10G, and 12G was reflected in their gross tensile stress–strain curve profiles (figure S3), which demonstrated a lack of the initial toe-region that is typical of randomly organized DC gels [13, 20, 24]. In contrast, the 14G I-DC gel demonstrated a clear toe-region, which is associated with fibrillar realignment in the direction of the applied stress [28, 29].

I-DC gels of similar CFDs produced using needle gauge numbers 8G, 10G, and 12G also displayed significantly (p < 0.05) lower collagen fibril dispersion compared to equivalent DC gels (figure S4).

3.3. Anisotropic I-DC gel permeability

The efficacy of the GAE system in regulating I-DC gel microstructure was assessed using bulk hydraulic permeability, a parameter dependent on the porosity, pore size, interconnectivity, and orientation of the fibrils [30]. Along with matrix stiffness [31] hydraulic permeability controls seeded cellular responses [17, 32], ultimately contributing to the biophysical properties of scaffolds through matrix remodeling [33]. Furthermore, knowledge of the bulk hydraulic permeability, representative of I-DC gel diffusive characteristics, may also allow for the utilization of I-DC gels as a controlled-release carrier of therapeutic agents in drug delivery systems. The biphasic nature of hydrogels provides an ideal microenvironment to control the release of bioactive molecules in drug delivery applications [34]. Although drug loading can be performed through covalent immobilization, predefined microstructures allow physical entrapments by simple encapsulation or affinity-based immobilization. In the latter case, the release profile may proceed through Darcy flow mechanisms [34], while involving transport processes. The transport capability of hydrogels can be represented by their bulk permeability [30]. To this end, a mathematical model was derived to simulate the permeability of I-DC gels (supplementary information) where the ratio of axial-to-radial permeability values was selected to demonstrate the role of needle gauge number.

An anisotropic I-DC gel may be regarded as a biphasic continuum with a porous solid phase, saturated by nonviscous freely moving fluid. It is assumed that the meso-scale, consisting of the fibrils, is one order of magnitude larger than the microscale, which consists of pores and fluid particles (figure 5(a)). The mathematical formulation used tensor notation to derive the permeability of a transversely isotropic I-DC gel structure. The tensor K denotes the effective (i.e., global) permeability tensor, where the ratio of longitudinal permeability (along the axial direction of the I-DC gels) to transverse permeability (along the thickness direction of the I-DC gels) was used to define the anisotropy. The anisotropy ratio (i.e., \(K_{z}/K_{r} \)) rapidly increased by transitioning from the DC to the I-DC gel, indicating the role of fibrillar alignment in regulating the diffusive properties of the porous structure (figure 5(b)). The gradient of variations was highest between the isotropic (DC) and anisotropic distributions of fibrillar orientation (e.g., I-DC 8G). The different needle gauge numbers regulated the ratio between the axial and radial permeabilities, potentially providing a tunable release profile for therapeutic delivery. The anisotropy ratio also depended on the CFD values, dramatically increasing in the case of tendon tissues.

3.4. Seeded MSC proliferation and differentiation in I-DC gels

It was previously demonstrated that the viability of seeded fibroblasts and MSCs was maintained in I-DC gels produced through GAE [19]. Furthermore, the GAE process imparted the immediate alignment of seeded cells along the fibrillar direction, ultimately accelerating their differentiation when compared to those seeded in DC gels. This study compared the effect of extent of fibrillar alignment in two I-DC gels of distinct CFDs on the proliferation and osteoblastic differentiation of seeded MSCs up to day 21 in nonosteogenic and osteogenic media. I-DC gels...
produced through 8G (6 wt% CFD) or 12G (12 wt% CFD), which were chosen since these provided either relatively large size or greater extent of fibrillar anisotropy, respectively. DC gels (18 wt% CFD) previously shown to promote the osteoblastic differentiation of seeded preosteoblasts and stem cells [15–18] were used as control.

Cell metabolic activity indicated that while there was an increase in proliferation up to day 15 in both media, significant (p < 0.05) divergence occurred beyond that time point, with MSCs cultured in non-osteogenic medium exhibiting greater metabolic activity when compared to those in osteogenic medium, which was attributable to the onset of cell differentiation [35, 36] (figure 6). In addition, in both media, there was significantly less (p < 0.05) metabolic activity in MSCs seeded in 12G I-DC when compared to those seeded in either 8G I-DC or DC gels, which may be attributed to either their relatively increased differentiation state or the smaller 12G I-DC

![Figure 3. Microstructural analysis. (a) SEM micrographs and (b) NLSM images of I-DC gels produced by GAE through needle gauge numbers 8G (6 wt% CFD), 10G (8 wt% CFD), 12G (12 wt% CFD), and 14G (18 wt% CFD) and compared to DC (18 wt% CFD) produced through PC as well as demineralized bone and tendon samples (Scale bars = 10 and 25 μm, for SEM and NLAM images, respectively).](image-url)
gel volume, which allowed less available space for proliferating cells to occupy. Along with an increase in gel CFD, the compaction process significantly increases seeded MSC density, which may control their proliferation through cell–cell contact inhibition [37].

CLSM images of Calcein AM stained seeded MSCs at day 11 demonstrated extensive viability in all gels. Furthermore, those cultured in 8G I-DC gel, and to a greater extent in those produced through 12G, were aligned preferentially along the longitudinal axis of the gels, confirming the ability of GAE to not only maintain the viability and proliferative capability of seeded cells, but also to effect their anisotropic alignment along the matrix (figure 7). In contrast, MSCs seeded in DC demonstrated no preferential orientation [38]. However, by day 21 in culture, cell alignment was less apparent in all gels attributable to extensive cell proliferation and matrix remodeling, thus occupying a large volume of the I-DC gels [37]. While cell-mediated matrix remodeling was not quantified in this
study, it was previously demonstrated that the extent of gel contraction was dependent on CFD and correlated with cell proliferation rates [17, 32]. Future studies will focus on investigating seeded cell-mediated matrix contraction in I-DC gels as a function of CFD and extent of alignment.

q-PCR analysis at days 11 and 21 assessed the expressions of \textit{Alp}, \textit{Runx2/Cbfa1}, and \textit{Ocn/Bglap} as indicators of MSC osteoblastic differentiation [37] (figure 8). The data revealed that while the MSCs seeded in all gels differentiated into osteoblast-like cells when cultured osteogenic medium, there appeared to be no statistical difference ($p > 0.05$) in differentiation between 8G I-DC and DC gels. However, there was a greater extent of MSC osteoblastic differentiation in the 12G I-DC gels, which by day 11, demonstrated significantly ($p < 0.05$) higher expressions in all three gene transcripts, and at day 21, displayed significantly ($p < 0.05$) higher expression of \textit{Ocn/Bglap}, a late marker for differentiation [39].
Expression of Alp in the 12G I-DC gel, cultured in nonosteogenic medium, was even significantly ($p < 0.05$) higher than that in 8G I-DC gels at day 11 in osteogenic medium. This relatively accelerated osteoblastic differentiation in 12G I-DC gels may be attributed to the combination of increased fibrillar alignment and physiologically relevant CFD, which enabled seeded cells to more rapidly differentiate as less matrix remodeling is necessary prior to the onset of differentiation [37]. While matrix stiffness modulation of MSC differentiation is known [40], it has been shown that MSCs seeded on aligned collagen nanofibers were more likely to differentiate when compared to those seeded on random fibrils [41]. The results of this study indicate that the 12G I-DC gel supported MSC osteoblastic differentiation by providing a 3D native tissue-equivalent environment.

4. Conclusions

The uniquely assembled GAE system provides a technique to rapidly and simply generate anisotropic, I-DC gels with highly defined microstructural, permeability, and mechanical properties. The ability to not only support homogenous cell seeding, but also to direct and accelerate their differentiation, creates numerous opportunities in regenerative medicine as well as drug and cell delivery.

Acknowledgments

Funding of CIHR, NSERC, CFI, Quebec MESRST (MDEIE), and McGill University Faculty of Engineering Gerald Hatch Faculty Fellowship are gratefully

Figure 8. MSC osteogenic differentiation. q-PCR detection levels of Alp, Runx2, and Ocn of seeded MSCs for up to day 21 of culture in nonosteogenic and osteogenic media. * indicates significantly different expression levels in gels cultured in osteogenic and nonosteogenic media. † indicates that Alp expression in nonosteogenic 12G I-DC gels is significantly greater than the expression levels in DC and 8G I-DC gels. ‡ indicates expression levels of transcripts that are significantly greater than their comparable counterparts in other gels.
acknowledged. The authors acknowledge Imaging and Molecular Biology Platform center (Pharmacology and Therapeutics Department, McGill University, Montreal) and thank Dr Wolfgang Reintsch for his technical assistance in NLSM imaging. The authors also acknowledge Dr Naser Muja for his technical assistance in recording the supplemental video.

References

[36] Ramprasad S N 2012 Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays Sensors (Basel, Switzerland) 12 12347–60
induces positive effects on bone turnover markers in postmenopausal women Osteoporis. Int. 20 1603–11
[40] Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677